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I FOREWORD 

The research reported herein was conducted by the 

staff of Monsanto/Washington university Association under 

the sponsorship of the Advanced Research Projects Agency, 

Department of Defense, through a contrac; with the Office 

of Naval Research, NC0014-67-C-0218 (formerly N00014-66-C-0045), 

ARPA Order No. 876, ONR contract authority NR 356-484/4-13-66, 

entitled "Development of High Performance Composites." 

The prime contractor is Monsanto Research Corporation. 

The Program Manager is Dr. Rolf Buchdahl (Phone 314-694-4721). 

The contract is funded for $7,000,000 and expires 

30 April, 1972. 
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STIFFNESS OF NON-ALIGNED FIBER REINPOWrRn rnuvnar™* 

R. E. Lavengood and L. A. Goettler 

Monsanto Company 
800 N. Lindbergh Blvd. 

St. Louis, Missouri 63166 

ABSTRACT 

A general procedure for predicting the average Young's 

-nodulus of short fiber composites is formulated and applied 

to random mat, three-dimensional random prepreg, and 

transfer moldings,  in all cases a uniform strain analysis 

agrees closely with experimental data for epoxy composites 

reinforced with graphite, stainless steel, and glass fibers. 

This reflects a high average stiffness in the composites. 

Several limiting cases and specific prediction techniques 

appearing 1- the literature are compared for the random 

composites.  Simple formulas are adequate for predicting 

the Young's modulus of these systems.  The effects of com- 

ponent properties on the random modulus are described. 

A new technique is developed for calculating the average 

modulus of a general axisymmetric composite by integrating 

over the orientation distribution. 

i«oof^^i0n HPC \XtX  frora ^ Monsanto/Washington university 
Senary? o?Trred by ^ danced Research Projects Agen^, 
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STIFFNESS OF NON-ALIGNED FIUER REINFORCED COMPOSITES 

R. E. Lavengood and L. A. Goettler 

Monsanto Company 
800 I,. Lindbergh B'vd 

St. Louis, Missouri 63166 
Introduction 

Th. explain, u« of .heet .„d buU .nolcling oompounda has 

increased the need for reii.hi. ^ •. 2 
tor reliable teohniquea for predicting the 

•tiffnee. of co-posite, reinforoed with ehort fibers.  The 

eUstio properties of speoi.il, orthotropio opposite, in whioh 

«bers are „ell aligned either parallel or terpendioular to the 

rection of stress oan be estate, fro. the component properties 

- fiber loading by agnations reported by Halpin ,1,.  „owever, 

«.is is an artifiolal situation for short fibers, „hloh o.nnot 

•« y be put into a high degree of alignment.  Xnstead, practical 

-lorngs nsuall. contain a „ids distribution of fiber orientation 

»*...  The degree to which orientation can vary is illu8trited 

^ the polished longitudinal section of a flow «.Idea part, 

shown in Figure 1. 

The purpose of this paper is to discuss, in general, the »eans 

integrating over the aistributlon of fiber angles in oraer to 

Preaict the Voung-s nonius of the „olaing. NonüniforiIl, „ ^ 

as ranao«, aistributlons will be consiaered. Con.par.son of 

^ious predictions with the „ensured „oduli of epoxy composites 

indicates acceptable .l»pUfylng assumptions. 

Similar treatments have beer given to the prediction of 

»txffness by a laminate approximation ,2,3). However, our worh Is 

-or. genera provides a basis for comparing varlou. averaging 

technigues, „d consider, the treatment of three-dimenslonally 

random and nonunlform symmetric orientation patterns in detail. 
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In this study the fibers are sufficiently long to give essentially 

the same stiffness as continuous reinforcement.  This is an 

important restriction since the dependence of off-axis stiffness 

on the aspect ratio of short fibers is not currently known. 

The IOSP  in  maximum unidirectional stiffness that occurs from 

randomizing the fibers in two and three dimensions to attain isotzopy 

is illustrated in Figur« 2.     In addition, the random structures 

cannot be fabricated with as high a fiber content.  Practical limits 

to fiber loading are indicated by the end points of the curves. 

The large differences which exist among the various types of com- 

posites emphasize the need for careful design. 

General Treatment of the Orientation D^ribution 

The elastic properties of a short fiber composite can be 

represented by a weighted linear superposition of the stiffness 

or compliance contributions of the individual fibers and their 

associated matrix,  when the orientation does not vary in the 

stress direction, the averaging takes place over the oriented 

"structural units" in the transverse cross-sectional area of the 

piece.  This structural unit may be either nicroscop^c or macro- 

scopic in scale, depending on the type of composite.  In the 

microscopic case, variations in orientation occur between adjacent 

fibers or neighboring groups of fibers; each of Uiese would be 

considered a unit.  Examples 01 this t,p> of composite are random 

composites, and those in which the fiber reinforcement tends to 

form a network by extensive crossing. On the other hand, when 

a variation in orientation occurs across distances wnich are large 

- 3 - 

■ 

• 

■ 

■■:--.^ 



in comparison to a fiber, the structural unit is macrcscopic.  It 

may consist of a bundle of fibers or a grain composed of several 

bundles, all of which are aligned at the same off-axif orientation. 

This type o£ structure typically occurs in injection cr transfer 

molding with relatively long (1/8" - 1/4") fibers. 

The procedure for calculating overall Young's modalus of a 

composite involves the steps listed below.  We take th* approach 

of calculating the average longitudinal Young's moJulu« for a 

hypothetical uniaxial tensile stress applied in such a direction 

that the structure of the piece is symmetrical about the axis. 

By axisynraetric we mean that there are two orthogonal reflection 

planes intersecting the axis.  Thus, the resulting structure is 

specially orthotropic.  Similar behavior would occur in a balanced 

symmetric laminate under a pure tensile stress.  In a more generally 

anisotropic structure the bending which would result from macro- 

scopic shear coupling would greatly complicate the analysis.  Al- 

though parts of this same general treatment have been followed by 

other investigators, we include it not only as a description of 

our procedure, but as a convenient outline. 

1' Assumption of plane r.trees or plane strain. 

The elasticity equations for a compccite can be reduced 

to two dimensions by assuming that either the stress or the 

strain is zero in the thickness direction.  In a dtite of 

plane stress, the strain in the thickness direction is not 

zero, even though it does not appear in the two-dimensional 

ratrix equations.  To account for the Poisson effects in 

this direction, the C-matrix of stiffress elements is reduced 

- 4 - 



to a Q-matrix as shown by Tsai (4).  Similarly, for com- 

pliance the S-matrix must be changed to an R-matrix in & 

plane strain situation. 

2.  Assumption of uniformity. 

It is necessary to assume that all structural elements 

in the composite are under either the same stress cr the 

same strain to simplify the calculations.  This can be 

justified by noting that uniform stress and uniform strain 

represent true lower and upper bounds to the elastic be- 

havior (5).  These solution? are commonly called Reuse and 

Voigt analyses, respectively, sfter the first workers to 

employ those assumptions. 

For reasons to be discussed later, the assumption of 

uniform strain is found to be the more accurate and 

corresponds to averaging over the transverse cross-sectional 

area of a piece.  This is in contradiction to some recently 

published data (17). 

- 5 - 
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3. Calculation of unlaxlal engineering properties. 

If the reinforcing fibers have a length-to-diameter 

ratio well above the critical level, the engineering elastic 

constants can be estimated from the properties of the 

constituents after the manner of Halpin and Tsai (1): 

A,, ■ E + v. (Ef - M 11 -^ vf Ef - Em (1) 

V12 " vm + vf (vf " v») (2) 

E  » E  2vf<R " 1) + (R + 2) 
22   m vf (1 - R) -t- {ft 4 2) <3) 

G12 - G..  Vf (K - 1) ^ (K + 1) 12    m vfa ^rrrurm (4) 
; 

where Em * Young's nodulus of the matrix 

Ef » longitudinal Young's modulus of the fibers 

vf » fiber volume fraction 
vm ' P01«»©«'» ratio of the matrix 

vf - Poisson's ratio of the fiber 

Gm - shear modulus of the matrix 

R » ratio of transverse fiber modulus to matrix modulus 

K » ratio of fiber shear modulus to matrix shear modulus 

- 6 - 

■   : 
■; 

' 

' 
- 

■   • 



In addition, 

E 
\) 21 

22 

11 '12 (5) 

and 

v23 • 0.2 to 0.3 (6) 

for roost composites. There is no simple prediction rule for 

v...  In these equations X, is taken as the direction of 

fiber alignment; the X.X, plane is Isotropie. Some 

improvements have been proposed for the above equations. 

Nielsen (6) makes an allowance for the maximum packing of 

fibers that becomes important at high fiber loadings.  He 

also interprets one of the parameters as a generalised 

Einstein coefficient, which modifies these equations for 

applications t. nonfibrous reinforcements. Hewitt and 

deMalherbe (7) propose an empirical correction to the 

dependence of the shear modulus on fiber volume fraction. 

4. Conversion of engineering constants to uniaxial stiffness 

and compliance. 

The stiffness (C or Q matrices) and compliance (S or R 

matrices) eure fourth order tensors which can be transformed 

through angular rotations corresponding to the orientation of 

the structural element in the composite. The individual 

engineering constants cannot be used directly since they do 

not possess these properties. The pertinent equations for 

converting to stiffness and compliance are sumnarised in 

- 7 - 
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Table I. To avoid errora due to the neglect of shear 

coupling term«, stiffness elements should be used if 

uniform strain is assumed, and compliance elements for 

uniform stress. 

5» Rotational transformation of the elasticity elements. 

Tensor theory provides transformation equations for the 

changes in the stiffness and compliance elements as the 

structural element is rotated about its x- axis from the 

I in-stress direction through an angle 6 to itu  position in 

the composite.  The complete set of equations, appearing 

in (4,8), can be reduced for our purposes since the aligned 

I composite that represents a structural element is transversely 

Isotropie. Consequently, the number of independent elastic 

I constants is reduced by symmetry considerations. This 

includes the elimination of shear coupling terms from the 

transformation equations. For these structures a tensile 

V stress does not induce a macroscopic shear deformation. The 

I 
■ *ni*)  - W11 m4 ♦  (2ir12 * ulf66) m2n 

I 
I "ll^   - "12 (^ "7 +(*11 * *22  * u*f^»2n 

| *22<d)  - Hu n4 + ^ 2lf12 ♦ ulf66jm2n2 + *„ m4 

| iaf66(e)  - J4lf11 -   8lf12 + 4W22jm2n2 + (m2 " n2J2 ulf( 

I 
a 

transformation equations required for estimating overall Voung' 

modulus are 

4 

.2_2 

'66 

(8) 

(9) 

(10) 
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wher« 

W^ «prewnt. any ela.tic «lamonti C^, Q^, ä^ or S^ 

u  la a factor ■ 4 for C and Q 
- 1 for S and R 

m » cos 9 

n ■ sin 6 

Only Equation (7) apPli.a In thra. dl»an.lon.. 

6. Avraglng over thm  nr-Untatlon dlatrlbutlon. 

In every «tructural element, with orientation 6 to 

the ctress direction. 

'i ■ ^ 'a '««j 

(ID 
li" iix "a (,"J 

where 

c ij " Sü^Öf? «tiffneas element for the same composite 
with fibera well aligned at angle 6 tTtheVteJa;? 

s ̂  • corresponding tensori«l con?>liance el «t. 

The response of the composite is obtained by averaging the 

responses of all such structural unite. For uniform strain 

the average atiffneaa is employed. 

ai - Z    ? 
j-l ij ^j ' (12) 

Average compliance is used with the uniform stress aaaumption 

'i-Ji^'i  ' (13) 
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In these equations, 

'ij-^ij'V'k 

o/ir/2 cij<e)£te)<ae 

7 **   cij {8(v)) ** 

(14) 

(15) 

where k • index on the structural unit/ 

Pk "■ the fraction of th«» total fibers which are oriented 
at the angle ek to the applied stress, 

N the total number of different angles in the composite, 

f - the probability density function of e» i.e., the 
orientation distribution function, 

V - the volume of th« oonposite, 

and similarly for S^. Equation (14) is useful for simple 

distributions where the probability density function is 

known, e.g., a random distribution. On the other hand, when 

6 must be measured as a function of position in a molding. 

Equation (15) is roorr convenient. 

7. Calculation of average Young's modulas. 

The average modulus of the composite, B^, is defined by 

51 * 'l '1 

or 

*1 " I ^l (16) 

where the l-direction is that of the uniaxial tensile stress. 

- 10 - 
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The pertinent equations relating 1. to the averaged 

elasticity elements are shown In Table II for Isotropie 

and specxilly orthotfoplc structures. Under certain 

condition« no entry has been made because the corresponding 

relationships are too nonlinear to permit a closed form 

solution for §.. 

All of the equations for E, do exist for a two 

dimensional composite under plane stress# which Is the most 

useful condition.  In three dimensions, averaged stiffness 

elements other than C** cannot be obtained from the simple 

equations given previously. The complete orientation 

distribution function Is blvarlate. Simpler but less pre- 

else procedures for calculati uj E, that utilise only the 

Cil  stiffness element are recc.aended. 

Shear coupling effects can be neglected when there is pr per 

symnetry and the same elasticity element (stiffness or compliance) 

is used in steps 5 and 6. After the angular transformation, but 

before averaging over the orle. *• 'tlon distribution, each 

structural element behaves like an off-axis unlaxial composite. 

In addition to the shear coupling that occurs in such a generally 

orthotropic system, the local shear and normal stresses may also 

be non-zero. Any conversion of elasticity eleiaents that neglects 

the non-sere «hear coupling ard Poisson effects would cause an 

error at this point. 

- 11 - 
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If« will now illustrate the application of the elasticity 

equations and averagxng techniques to three different types of 

composites.  These are all practical moldings made from short 

fiber reinforced epoxy. 

Two Dimensionally Random 

The Isotropie "ran^jm-in-a-plane" structure results when 

thir composites are made from a sheet molding compound or 

random preforms.  In this case  £(6), the probability density 

function which describes the orientation distribution, is a 

constant k, Independent of 6, and equal to 2/ir. This reduces 

Equation (14) to 

Äij " I o^2 1fij(e) de (17) 

where w represents any of the four elasticity elements. 

The upper- and lower-bound predictions of the stiffness 

are compared in Table III. The lower bound (Reuse) estimate 

for Young's modulus is 35-40 percent lower than the corresponding 

Voigt estimate in this case. Thee« result« are obtained by 

integrating the appropriate elasticity elements in Equation (17) 

and then converting the result to the Young's modulus, E^  by 

use of the equations for an Isotropie body presented in 

Table IX. Estimate« of the shear modulus and Poisson's ratio 

are also given. 

With the assumption of plane stress, which is usually 

valid for laminates and sheet materials, the two-dimensional 

stiffness Q applies under the condition of constant «train. 

- 12 - 
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Both the Q^ and Q12 element« must be averaged. Previous 

worker« (9,10) have estimated E1 by equating it to Q.. alone. 
/ 

\1 " v12 V21I ii "»ity* Although this term is Phis assume  thct {       k v-,^ i« 

.98 for aligned compo«ite«, it« neglect in the random system 

causes about a 10 percent error. 

Substituting from Equation« (7) and (8), 

hi ' ? o'7"2 Oil   <»>  « 

l t*n 
TT   0 Q^^ m    dO ♦ I s*'2 

ir o 
( «u + «e« kv de 

+ 2 rn 
Q22  n    dO (18) 

w12       ir o Q12 (m4 ♦ n4)de + | o/^Qu ♦ Q22 - *Q66)m2n; de 

Carrying out the integration« give« 

511 " I Qll + T («12 * 2Q66) + \ ^22 

512 " T Q12 + ? (Oil + Q22 " 4Q66 ) 

(19) 

(20) 

(21) 

The true Voigt estimate for the Young'« modulus i« then calculated 

from 

(Ai+jy^-Qj 
(22) 

'11 

giving 
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II 
B 
fl 

a 

1 3ou +'jb12 * 3ö22 ? 4ä6(  
<23' 

The Reuss-type lowerbound can be derived in a similar 

manner by summing compliances rather than stiffnesses. 

§11-|-|<//2S11^   d0 

l(Sll + S22) + tl2S12  + S66 (SU + S22) + f( 

Both the upperbound and lowerbound predictions are functions 

of the ratio of fiber modulus to thai of the matrix. A decrease 
1n Young's modulus of the random composites rel^cive to that of a 

longitudinally aligned system as the modular ratio increases is 

shown graphically in Figure 3. E,, increases almost in proportion 

to the fiber modulus in a given matrix, but since the modulus of 

a random structure is heavily influenced by the transverse 

properties, it does net increase as rapidly. 

The calculations are plotted in dimensionless form as Ei/Ei i 

in order to reduce ehe number of independent rsriables. The 

independent variable« that must be specified re only four: E^/E . 

v" vm' an<S loadin9 (when the fibers are sufficiently long to 

be considered infinitely long, as they are in this case). 

Calculations show that there is, in fact, no effect of fiber 

- 14 
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l M um ■ 

N, 

Poisso^'c ratio for leotroplc fibers over the range of 0.2 to 0.3. 

The effect of v Is also negligibly small. An Increase In vm from 

.3 to .4 causes the small decreases In 5,/E,, that are noted In 

Table IV. There is no variation with the tibec loading In the 

comroslte.  Since E., does not depend on the Polsson coefficients, 

the reported changes In B./E.. also apply to E. alone. 

Since Equations (23) and (24) are sosierhat cumbersome to use, 

some less precise expressions have been developed. Four of these 

will be compared with the rigorous Voigt and Reuss analyses In 

this paper. The first Is a simplification of the Vo/jt or 

constant strain analysis that operates entirely with the Q11 

element.  Tsal and Pagano have shown that for most laminates the 

following approximations Introduce very small errors (10): 

'12 " t B22 '11 E 11 

-• 3- E, '66 " ff ,522 Q22 " E22 

and with the asvunptior. that B 
1 J Qll ' 

h - i Eii + IE 
22 

The Reuss analysis in Equation (24) can be simplified In a 

manner similar to the derivation of Equation (25) 'jy assuring 

G12 " f E22 end v12 " I * 
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  mill 
.: . ■ ■■ 

This leads to: 

l'   3 / 1  .  1 \4 1 /  8     2  \ 

5  .   
24E11 E22 

'22 11 
(26) 

Th« equation proposed by Hcrlo and Onogi (U) for two 

dimcnsionally random sheets. 

En 'I E11E22) ' (27) 

is derived from em integration of 

E*- 

Ell E2?  
 2 ~ T~ 
E^ sin e + E22 cos e 

(29) 

ovei the uniform random distribution. This equation is derived by 

a simplo force balance on an off-axis material element and 

neglects shearing strains. 

Nielsen and Chen (12) estimated the modulus of random com- 

posites by a technique similar to that applied to crystals by 

Huber and Schmiä (13). They rotationally transformed the compliance, 

S,,, inverted to obtain E. (9), and then averaged the latter eves' 

the orientation distribution . Although this work is cowmonly 

regarded as a lowerbound estimate of stiffness utilizing a uni- 

form stress analysis (2), this ia  not the case. The averaging 

is done under a uniform strain condition, but differences are intro- 

duced by the shear coupling and Poisson terms that are neglected in 

the equating of EjO) with the reciprocal of 3^(6). ihe off-axis 
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element ^n the composite is constrained, so that the local 

transverse and shearing stresses are  ncnzero. 

These results are all compared with the rigorous upperbound 

and lowerbound prftdictions of the random modulus in Figures 4 and 5 

for epoxy/glass and epcxy/graphite composites.  The hybrid estima- 

tions of Horio-Onogi and Nielsen-Chen are seen to fall midway 

b^tweerx the upper and lower bound«. The various analyses for 

random lodulus all come into agreement with each other and also 

with E,, at very low volume loading, since under this condition a 

sinjle phase of the composite predominates. For the loading range 

of interest in composites, the 3/8-5/8 rule is about 10% higher 

than the exact Voigt analysis, which is a true upperbound. This 

is to be expected becnuce of the neglect of the Poisson factor. 

The values of the parameters ured iCnr calculating the cur/es 

in Figures 4 and 5 are given in ^able V.  The anisotropy of the 

graphite fibers in the epoxy/graphite composites requires some 

fTirther approximation in the use of the Halpin-Tsai equations for 

the unidirectional properties. Since these equations properly 

apply only to Isotropie fibers, a different value of the fiber 

modulus was used for calculating E22 than for E11. Table VI slows 

that changes in the transverse fiber stiffness have very little 

effect on the predicted random modulus. Ovx  estimate of 4.1 x 

106 psi for the transverse fiber modulus was obtained by back 

calculating from experimental data for transverse composites. 

Experirantal data covering the complete useful range of 

fiber loading for glass fiber/epoxy and graphite fiber/epoxy 

conf>osites are compared with the equation« in Figures 6 and 7. 
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The uniaxlal «ngineering conatanta were calculated by means of 

Equaticaa (1-6), using the component properties given in Table V. 

*iber aspect ratio was approximately 2,000. 

The glass data cluster quite tightly between the two 

upperbound Voigt pradictions, thus justifying the use of the 

constant strain analysis. The lowerbound (Reuss) constant-stresc 

analysis predicts moduli that arc 35 percent low.  Since the 

simple 3/8-5/8 rule of Equation (25) is as adequate as the more 

cumbersome true Voigt analysis, its use is recommended. 

The graphite data are only slightly below the true 

upperbound Voigt prediction, again justifying the constant strain 

analysis.  In this case the 3/8-5/8 rule of Equation (25) is 

about 10 percent high, probably due to neglect of the Poisson 

factor ^1 - v17 v21j. However, it may still be useful for 

its simplicity. The constant-stress prediction would be 75 

percent low for the graphite composite which has a high fiber- 

to-matrix modular ratio. Comparison of the two figures has 

shown the graphite data to fall slightly lower than the glass 

data with respect to the corresponding Voigt analysis. Although 

this difference is not significant for our composites. It is an 

effect of finite fiber length. As the fiber modulus increases, 

larger aspect ratios are required to realise the maximum 

longitudinal composite stiffness. 

3-D Random 

A three-dlmensionally raüdom structure is frequently found 

in thick molded parts. In such a composite, fiber rotations may 

take place through two orthogonal angles. Consequently, 

- 18 - 
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bivariable orientation distributions must be used to characterize 

the structure. This considerably coraplicates the averaging 

procedure that must be used in calculating the overall stiffness 

behavior.  Practical stiffness estimations for 3-D random and 

a symmetric orthotropic structure are still possible by adopting 

the more approximate methods that have been previously described 

for the 2-D case. 

The simplification that is required for treating three 

dimensional structures is to consider all fiber rotations as 

being made in the plane containing the fiber in its final 

position and the stress direction. Unlike the 2-dimensional 

case, there «rill now be a distribution of these planer «bout the 

stress direction throughout the composite, instead of a single 

common plane. By limiting our attention to the angle of 

rotation of each orientation element from the stress direction 

in its own plane, the problem is reduced to a single variable 

angle. However, we are, by so doing, now restricted to analysing 

..       only those property changes that relate only to the one dir «otic» 

lJ       common to all the rotational planes, namely the direction of the 

applied stress.  That is to say, a quasi two-diroencional analysis 

can be applied to the elements C.., Q11, s11 or R.^. Since the 

average C,. ^22' etc" cannot be 80 determined, the exact 

formulae for calculating the overall Young * s modulus are not useful. 

Instead, B. must be estimated directly from the averaged one-one 

elasticity component. 

- 19 - 
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Cox (14) ha« shown that for a threa-dimen«ional random 

■tructure, the probability density function for the orientation 

angle equals sin (6).  As In the two-dimensional case, we expect 

tha constant strain to be preferable and so take an average of C 
11 

i 
I 
B 
a 

u 
i 
a 

ail * Cll o^2 »4» **  + (2C12 ♦ « 66) S'2 n3«2 de + C 
22  o- 

-ir/2  .5 n de 

* Cll * h i*!! * "tt) * h C22- 

(29J 

(30) 

This can be approxlaataly rewritten In terms of the engineering 

constants as 

:11 * 5" Bll + 15" j 2v12E22 + 4G12 I + TS E22 
) 

8 
(31) 

Assuming further that v12 - 0.25, C66 - | E22 and C 12 

^ " F Ell + J B22- 

11 " E1 leads to 

(32) 

Figure 8 shows a comparison of this prediction with experimental 

stiffness data for epoxy reinforced with three dimenslonally 

random stainless steel fibers. These fibers are Isotropie 

and have a Young's modulus of 30 x 106 psl and Poisson's ratio 

of 0.3.  The agreement between experiment and this simple 

theoretical equation is good. 

A somewhat more accurate estimate of E. can be obtained by 

foregoing the simplifications that lead to Equation (32). 

Instead, we rewrite the elasticity components on the right hand 

- 20 - 
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•id« of Equation (30) in term« of the engineering con«tent, for 

a tran«v»r»«ly ieotropic system, as given in Table 1. The 

identity for c11 is a redaction of the first entry in that table 

to an Isotropie system 

•11s   icw 

* •Hia v2i)si2/15 ♦< (33) 

wh«.  ♦c-(1+V23)(1-23^12v2l) 

Dividing by ( l-v23
2)/*c  and taking 

1-v2 1-v 

"O^) "T 
23 

gives 

J'U* fc [feM^HG^K. (34) 

This result, while more complicated than Equation (32), gives 

a prediction for B1 that is closer to the true Voigt analysis. 

(A rigorous closed form solution, as given by Hearaon (f), can be 

obtainad by other aethods for this totally raadosi distribution.) 

As an example, for a glaas/apoxy compoeite in which the true 

Voigt e.timate is 2.08 x 106 psi, the 1/5-4/5 rule of Equation (32) 

predicts a value of 2.47 x 106 psi, which is 1» percent high, 

- 21 - 
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wherea» Equatioi. (34) is only 15 Percent high at 2.39 x 10° psi. 

Tor  thia case, the difference is negligibly snail, but the method 

used to derive Equation (34) will be generalized in ttat next 

section to treat the nonuniform symnetric distribution for which 

no simple form exists. 

■ 

■ 

■ 

The true Heues estimate for the lowerbound can be easily 

calculated for both Isotropie and orthotropic structures because 

the Young's modulus S. is the reciprocal of 8.^. This can be 

calculated by carrying out the quasi 2-D analysis as was done for 

C11 in Equation Ö9J.  This integration gives 

•u •!»■.. < i r8u*r5 <Mi2 + lW +T5 822[ (35) 

As with the 2-D lower bound this expression can be simplified by 

assuming G12 - 3/9 E22 and v12 - 1/3. This yields 

9 E11E22 
» »11 + »22 

(3C) 

a 
i 
i 
D 
I 

Xn the Cvvse of the example epoxy/glass composite mentioned 

previously, the true lowerbound estimate calculated from 

Equation (35) its 1.53 x 10"6 psi, which is 26 percent below the 

corresponding Voiyt analysis. 

To put the results for random systems into perspective, the 

reader is refered back to Figure 2 where plots of the successful 

3/9-5/9  rule for 2-D composite» and the 1/5-4/5 rule for 3-D 

composites are compared with uniaxial longitudinal and transverse 

Young's moduli for glass/epoxy composites. 

>  - 22 - 
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Syamatric Monunifonn Dl»tribntion» 

«then 4 part is fabricated fro» bulk Molding coapound, the 

•tructur« is neither well aligned nor random. A tendency toward 

good Alignment can be obtained by tailoring the flew geometry 

of the part, but »ignifleant angular deviations alwaya exist 

among the fiber«, so that the uniaxial equetione cannot be 

accurately applied. On the other hand, unless the fibers are 

extremely short (*/d < 20), enough flow orientation will occur 

to invalidate any assunption of randomness. 

Ix the molding has axial symmetry, and the gate location is 

also synnetrical about the axis, the resulting orientation 

pattern will be symmetrical dthough macroscopically nonuniform. 

if the end gate is small, the structure of the raiding comprises 

a core of transversely oriented fibers surrounded by an envelope 

of orientation parallel to the axis (15). A typical orientation 

distribution measured in a 1/4" x 1" x 6" bar appears in 

Figure 9,    it is possible to measure and characterise such a 

distribution of fiber angles in terms of a mean direction and a 

standard deviation about that direction as a funcrion of the 

coordinate position xn the molding (16). Since this is a difficult 

and tinv» consuming task, it is not recommended as a routine 

analytic si 1 procedure. However, advances are being made in 

relating the expected orientation distribution to the mold 

geometry and molding variables. This will eventually allow the 

complete a priori prediction of stiffness at the design level. 
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Th« flbor orientation in «ny plan« out through the molding 

fraouantly follows a norm«] distribution for which the mean 

and standard deviation are functions only of position in the 

transverse cross-section (see Fig. 10). 

-■ ■  " 

.v ■ - 

i 

^ - %i x2, x3j (37) 

i - 10 
m 

The aiiauthal angle about the axis, 51(x2, xA,  can be calculated 

fro« a knowledge f the #-distributions in two orthogonal planes 

under the assumption that these two distributions are independent. 

This is, in practice, an acceptable assumption for the x2 and x, 

planes, although it is not rigorously valid. The local average 

ei at •"y point in the cooposite is then given by 

'l (»2' «3) * -/ -/ »l[*2-  *$*£?  hfa  »,). -tj'v  .,)] • 

«[♦,, »s(.2 X,), %, VI (3i) 

1 

■ 

where N is the ncrmal ö^ stribution of ♦, with mean i. and 
standard deviation s. and ▼!  «» ■-«» f £ «» 

fi 
(• 

♦2' ^3/ is a 9«on8trical relationship derived fro« the 
equations for spherical coordinate systems, given by 

-1 tan ctn2 ^ ♦ tan2 ^ 
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In a similai manner an elasticity alcaant can also b« «vcraqed 

over the local distribution as followst 

Äij(x2' x3) •" -/W -**  Wij JW ♦3)j *(*2)  "(♦a) «♦a d*3  (40) 

The local values of either the polar angle or the stiffnesa 

element must next be averaged over the cross-sectional area of 

the specimen in order to relate to the overall elastic behavior. 

The resulting overall averages are designated with a donble bar. 

The integrations are best performed numerically using a computer. 

_ Assuming constant strain, the C11 element is averaged over 

both the laicrosocpic» or local, and macroscopic variations in 

the orientation angle after first dividing by the factor 

(l - V23W0* M was done to arrive at Equation (33) previously. 

'i a ijj F F Isin Bj^ cos "•■1 
+  I V122

V21 j^ p|aln 
1 - v 23 '•■I (41) 

( . 

where F t'Wl is the operator ^ A// ^Z ^J    A^IIH' ^lYi 

*(*2)  "(♦s) d*2 d*3 & 
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Figur« 11 shows a comparison of this theoretical stiffness 

analysis based on measured orientation distributions «fith the 

measured Young*s moduli for bars transfer molded from 40 to 50 

v/o of 1/8" S-glass fibers in an epoxy matrix. Although some 

fiber breakage occurred during molding, the average aspect rstio 

in the molded bars was still 200. For a fiber-to-matrix modular 
- 

ratio of only 2$,  these fibers are sufficiently long to contribute 

the same stiffness as a continuous filament. The predicted 

moduli are about 13 percent above the mtasured value* for the 

entire range of distributions tested. This discrepancy appears 

to arise fron the approximate treatment given to the factors of 

Poisson coefficients. Equation (41) implies that the quantity 

{l  " v23 v32)/(1 * v12v21 * v23v32 " v31v13 "  2v12v23v3l) 

[-HI is invariant under the averaging operator F 

when there is no a priori reason to expect s'uch constancy. 

However, the utility of the method is greatly enhanced by the 

observation that, for tht random geometry previously treated, 

it also predicts a YOUM*J*S modulus about 15 percent higher than 

the true Voigt analysis. Consequently, 

i)  a very accurate value for the modulus, within a couple 

percent, can be obtained by taking 87 percent of the 

result obtained by this approximate treatment. 

ii)  the stiffness data obtained on an axisymmetric sample 

can be closely described by a Voigt-type analysi« that 

assumes constant strain. 
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The experimental meaeurementi of Younf •• »odulut »how tb-i* 

for both random and axlaymmecric composites the ur^cim strain 

analysis is  accurate to writhin 15 percent. There are two 
■ 

structural characteristics of the?»e samples that are requisites 

for constant-strain averaging. First, the overall structmre 

of the composite must be specially orthotroplc with respect 

to the load direction. This prevent» the develop«sat of 

macroscopic shear strains under a tensile loa^. All structural 

elernentb in a transverse plane will then be under the same 

tensile strain. Local shearing strains, which might exist 

around the individual structural elements, will be of small 

scale and will t.*A  to cancel. 

Secondly» the averaging must be done only over a transverse 

plane. Xf major variations in structure occur both across and 

along the composite, a double a jraging procedure becomes 
■ ■ 

necessary. The equilibrium of forces requires that all normal 

sections along the axis be under a uniform load which, for 

constant cross-section, reduces to a uniform stress rather than 

uniform strain. The integral in Equation (15) can be expanded to 

///dV  / // dAe mgifrifti **<, constant      
(42> 

v     t A 

where the order of integration is not specified. After 

averaging C,., for example, at constant strain over cross- 

sectional area A, the compliance, 8^,  can be calculated or 

estimated and then integrated (at constant stress) o»rer the 

length dimension, i. But this result is not uniquef reversing 
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the order of integration will change the calculated average 

stiffness. When the orientation changes occur in one direction 

only. Equation (42) correctly reduces to the proper Voigt or 

Reuse average. 

It is clerr for tie transfer moldings, where no ixial 

variatijn in  orientaticn occurs, that the averaging should bo 

carried out in a transverse pla:e under the unifona «train 

ccnditioA. This is the Voigt type of analysia. However, the 

random coa^osites ehe« tuet  equal distribution in orientation 

of the structural elements both along And perpendicular to the 

strsss axis. Dependinc on the order of integration« application 

of Bquatica (42) results in either the ordinary Vcigt or Reuss 

predictions, since the integrand i  ue  second integration 

would always be a constant. Unlike the case for transfer 

noldlngs, it is not possible to predetermine the correct 

assumption of unifoxBity. Sowev-tr, our data on random composites 

snow that, to a very close approximation, the Voigt uniform 

strain analysis applies to random systems, whereas, depending 

on the fiber-to-matrix .nodular ratio, the ^owerbound Reuss 

analysis may be more than 75 percent low. 
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Summary and Conclusions 

Practical moldings of shc-'r. fiber composites do not have 

a high degree of fiber alignment.  Instead, the fiber orientation 

is nonunlform on either a microscopic or a macroscopic scale in 

relation to the mold dimensions. Calculation of the average 

Young's modulus requires an Integration of the elastic constants 

across the distribution of fiber orientation angles. A general 

procedure is formulated and applied to three types of composites. 

In or(*ar to avoid shear effects the structure must either be a 

balanced symmetric laminate ur the orientation pattern must be 

axisymmetric to the applied tensile stress.  Errors from neglected 

shear coupling and Poisson terms will arise if the steps in 

£       the averaging procedure are not performed in the proper sequence. 

The effects of fiber loading, fiber-to-matrix modular ratio, 

and component Poisson coefficients on the Young's modulus of planar 

random composites are computed under the assumptions of uniform 

stress or uniform strain.  The stiffness relative to an aligned 

composite decreases as the modular ratio increases and the Poisson 

coefficients have no significant effect in either case.  In 

r 

i 
[ 
[ 
r 
i. 

comparison with other theories, the uniform strain (Voigt) analysis 

|        gives the best agreement with experimental data on epoxy/glass 

and epoxy/graphite composites.  Similar equations are derived 

'—       for three dimenslonally random composites. 

t 
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A new technique is developed for analysing stiffness in 

nonuniform axiayimatric composites as would be produced by 

injection or transfer molding.  It can predict the Young's 

modulus from measured fiber orientation distributions within 

five percent. 

In all cases the measured average modulus lies close to 

the predicted upperbound, which is based on an atsumption of 

uniform strain in the stiffness analyses. 
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Table Z. Equation« for Calculation of the Uniaxial Aligned 
Elasticity Elements fro« the Engineering Conatant« 

X. Onlfor» etralni plane «train or 3-D 

(l  " v232) V*fl 
"(l -v12v21) E22^ 

C, - v.. (i ♦ v23) BII/*< 

11 

'22 

'12 21 

C66 * 612 

i1 *  V23) i1 - V23 - 2V12 V21 

B. uniform strain; plane stress 

Q22 
m 

*2* »9 

«U ■ vn hi /♦0 

%t " G12 

V i (- 
V12 V21 

) 

C. uniform stress; plane «train 

*nmi1' vi2 ^i^n 
R22 " {l -  V232)/E22 
R12 " *  V12   i1 +  V23)/E 

R66 " VG 

23//l5ll 

'12 

D. Uniform stress; plane stress or 3-D 

S 11 1/E 11 

1/E. -22 - *'-22 

S12 " " V12/Bll 

66 
1/G 
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Plane 
stress 

Plane 
strain 
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Table II 

Formulas for the Average Young*a Modulus 

laotropic 

Uniform Stress   Uniform Strain 
Ogthotropio 

Uniform Stress  Uniform 
Strain 

E, 
S 11 

A s 11 

■   Rir2Ri2 
X(5U-Sl2): 

Cu-Cia»^**!^ S mJL 
'hi 

-.  .(8u*Ü(5u-5j 

1    (^11^12) 

1 s 11 

X 
i.Q Mil Bl"Qll =  ' 

'22 
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Rigorou, Prediction» for th« stiffn««« of a 2-D Random Compo.it« 

B11 - 5.29 x  106 psi 

s22 1.76 x 106 pai 

.6 G12 - .41 x 10
6 psi 

•' 
v/o - 50 

'12 

'21 

.3 

.1 

V23 " v32 " '2 

Aasuiaptiona 
Uniform 

Strain (Voigt)  s rein 
Strain Streas 

Strass (Rauss) Strain 
Strass Stress 

Elasticity 
Pl«na    Blamant Usad 

C 
Q 

R 
S 

Ij x 1C *6 psi 5 x 10"6 psi 

2.52 
2.66 

1.60 
1.74 

.98 

.98 

.61 

.60 

.28 

.36 

.32 

.44 

Table IV 

Bffact of Matrix Poisson's Ratio on the Stiffness of a 2-D Random 
Composite 

Percent decrease in E1/En caused by an increaae in the bissen's 
ratio of the matrix, vm from .3 to .4 

rv^" 

Voigt 

Reuss 

If 

1.0 

2.5 

"253 1 

0.3 

3.6 
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T«bl« V 

Component Material Propertie» for Epoxy/Glans and Epoxy/Graphita 
Coopoaitac 

Material 
11      .1.11.    I  in"",        nil"!       urn 

Parameters 

Ef x 10'6, psi 

^ x 10"6, pai 

2poxy/K-GIiiM8 Epoxy/Hercules HI 
". "        i        ™ — —"-- 

10.5 

Gf X 10 -« 

6« x 10 -6 

4.3 

.15 

32.« 

.41 

.22 

.35 

4.0 

.15 

*4.1 x 10 pai used for predicting t„ for the 22 

Table VI 
i 

Effect jf Changes in the Transverse Modulus of Graphite Fiber 
on the Stiffness of a 2-D Random Epoxy Composite 

Transverse fiber 
modulus x 10~6, psi 

Transverse fiber 
modulus relative 
to matrix modulus 

Composite stiffness 
*l/Bll •* 40 v/0 lo*ding 
by Voigt analysis 

1. 2.4 .36S 
4.1 10.0 .377 
5. 12.2 .378 

10. 24.4 .381 
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Figur« 1. Polishsd Longitudinal 3«otion of a Flow Molded Part. 
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Figure 2.    Comparative Stiffness of Various Types of Glass Fiber/Epoxy 
Composites. 
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Figure 7. Young's Modulus of a Planar Composite of Random Graphite 
Fiber in an Epoxy Matrix. 
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Figure 11. A Comparison of Predicted and Measured Young's Moduli in 
Glass Fiber/Epoxy Transfer Molded Bars. 
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